Thank you for choosing the GPS-iMEASURE-D. The GPS-iMEASURE-D ion detector is permanently mounted in the duct or inside an air handling system downstream of any GPS ionization device.

Hardware Required by Installer
- Mounting screws
- Electrical connectors
- 18/4 twisted-pair shielded cable

Installation Location
GPS recommends the GPS-iMEASURE-D be installed on or in the duct within 36-inches downstream of the ionizer, away from extreme heat and condensation. The unit should be mounted prior to the first take-off if any exists. Unit should be mounted at or near the same elevation as the ionization device for more accurate readings.

Mechanical Installation
1. Prior to installation, ensure outer mesh is not in contact with inner tube. If necessary, adjust mesh accordingly.
2. Select a location for installation. Find an area that will minimize dust, dirt, and water. The duct must be at least 11 inches deep.
3. Cut or drill a 2-1/4-inch hole in the duct. Insert the GPS-iMEASURE-D into duct.
4. Secure the GPS-iMEASURE-D to the duct with field supplied screws.
5. Note: the housing must be in contact (grounded) and secured to the duct for device to work properly.
6. In larger air handlers, the GPS-iMEASURE-D may be mounted entirely in the airstream, but the housing must be grounded.

Electrical Installation

CAUTION: MAKE SURE POWER IS DISCONNECTED FROM HVAC EQUIPMENT BEFORE INSTALLATION
- Verify voltage of circuit the GPS-iMEASURE-D will be connected.
 INPUT VOLTAGE RANGE 12-24VAC or VDC
- Wire the GPS-iMEASURE-D per the following (see FIGURE 1):
 Pin 1 = 12 to 24VDC Supply (+)
 Pin 2 = 12 to 24VDC Supply (-)
 Pin 3 = Polarity selection: No connection (floating) = detects positive ion
 Connected to pin 4 = detects negative ions
 Pin 4 = Output Return or reference
 Pin 5 = Output to BMS 0VDC to +10VDC

![Figure 1](image)
Scale Selection
The scale on which the ions are read can be adjusted. To adjust the range (sensitivity) of the GPS-iMEASURE-D, move the white jumper on the control board. See Figure 2 and Figure 3.

- No Jumper = 10k ions/cc/sec (0V = 0 ions and 10V = 10k ions)
- Jumper on center and right pin position "A" = 100,000 ions/cc/sec (0V = 0 ions; 10V = 100k ions)
- Jumper on left and center pin position "B" = 1,000,000 ions (0V = 0 ions; 10V = 1M ions)

Programming Note: If you don't know what scale to use, start with the 10k ions/cc/sec scale.
If the output voltage stays near 10V on this scale, move the jumper to read 100k ions/cc.
If the output voltage stays near 10V on this scale, move the jumper to read maximum level of 1M ions/cc/sec.

Initial Power Up
Once power is applied, the GPS-iMEASURE-D will go through a 15 second calibration cycle. During this time the LED will flash red or green (depending on detection polarity) and, the output will go to 0VDC. The bi-color LED will be solid red or green when power is applied and there are no faults.

Self-Test
Upon power up and once every hour the GPS-iMEASURE-D will perform a self-test. During the self-test the device's ion sensitivity is tested. During the self-test the output levels are held at the pre-auto zero level. Upon a fault, the LED will flash alternating red and green, and the output level will be pegged at 10V (remote indication of error). The most common cause of an error is lint or fiber accumulation between the screen and the ion sensing tube or moisture condensation.

Indicators
- Dual color LED
- Blinking Green: Positive polarity self-test
- Solid Green: Positive polarity normal operation
- Blinking Red: Negative polarity self-test
- Solid Red: Negative polarity normal operation
- Alternating Green and Red: Self-test failure

Maintenance
Accumulation of lint and dust, spider webs or web fragments within the ion chamber can cause inaccurate readings, the inability to auto-zero or the ability to maintain a proper chamber voltage. This can usually be corrected by cleaning the chamber with canned compressed air. It is advisable to periodically blow out the chamber with compressed air. The frequency of this preventative procedure will depend on the environment in which it is used. Cleaning the unit/chamber once a year will usually be sufficient in non-industrial environments.
Sensor Data Summary

- Voltage Input: 12-24V AC or DC
- Current: 100mA
- Power: <2 watts
- Sensing Range (ions/cc): 0-20K, 0-200K, 0-2M
- Sensor Output: 0-10VDC
- Polarity Sensing: Positive or Negative, jumper controlled (a BMS can use a binary contact to change polarity remotely)
- Temperature Range: -20°F to 140°F
- Humidity Range: 0 to 99% RH, non-condensing